机器学习方法在组织管理研究中的应用日益广泛,国内顶刊《管理世界》去年也曾发表了机器学习赋能管理学研究的综述论文。为了帮助大家更好地了解机器学习在组织管理研究中的应用,本期推文对组织管理领域15本顶级期刊上应用机器学习方法开展研究的34篇论文进行了汇总。检索的关键词为machine learning或者 statistical learning,检索的期刊包括Academy of Management Journal(0篇)、Administrative Science Quarterly(0篇)、Human Relations(1篇)、Human Resource Management(0篇)、Human Resource Management Journal(4篇)、Journal of Applied Psychology(8篇)、Journal of Management(0篇)、Journal of Management Studies(0篇)、Journal of Occupational and Organizational Psychology(1篇)、Journal of Organizational Behavior(0篇)、Journal of Vocational Behavior(1篇)、Leadership Quarterly(6篇)、Organization Science(2篇)、Organizational Behavior and Human Decision Processes(3篇)、Personnel Psychology(8篇)。
从期刊分布来看,近几年JAP、PPsyc和LQ上的应用机器学习方法开展研究的文章数量较多。从方法的使用目的来看,机器学习方法在组织管理领域主要应用在变量测量与量表开发(18篇),其次是用于建立预测模型(5篇)、因果推断或相关分析(5篇)及其他目的(6篇)。下面按年份列出各文献的引文及应用要点,引用次数根据谷歌学术记录。
- 2024年 -
1、Yuan, S., Kroon, B., & Kramer, A. (2024). Building prediction models with grouped data: A case study on the prediction of turnover intention. Human Resource Management Journal, 34(1), 20-38.(被引用次数:36)
应用要点:通过不同的机器学习算法来探究离职的影响因素。
2、Song, Q. C., Shin, H. J., Tang, C., Hanna, A., & Behrend, T. (2024). Investigating machine learning's capacity to enhance the prediction of career choices. Personnel Psychology, 77(2), 295-319.(被引用次数:7)
应用要点:通过机器学习来提高基于兴趣清单的职业选择预测的准确性。
3、Sajjadiani, S., Daniels, M. A., & Huang, H. C. (2024). The social process of coping with work‐related stressors online: A machine learning and interpretive data science approach. Personnel Psychology, 77(2), 321-373.(被引用次数:5)
应用要点:利用计算扎根理论和机器学习来探究工作相关的网络社会应对过程。
4、Li, Y. N., Law, K. S., Yu, B., Wang, L., & Li, D. (2024). Different impacts of hedonic and utilitarian personal Internet usage behaviour on wellbeing and work engagement: A daily examination. Journal of Occupational and Organizational Psychology.
应用要点:通过机器学习对过去研究已经识别的非工作上网行为进行分类。
5、Kumar, L. S., & Burns, G. N. (2024). Determinants of safety outcomes in organizations: Exploring O* NET data to predict occupational accident rates. Personnel Psychology, 77(2), 555-594.(被引用次数:4)
应用要点:用三种机器学习算法来预测每年非致命职业事故率。
6、Hickman, L., Saef, R., Ng, V., Woo, S. E., Tay, L., & Bosch, N. (2024). Developing and evaluating language‐based machine learning algorithms for inferring applicant personality in video interviews. Human Resource Management Journal, 34(2), 255-274.(被引用次数:44)
应用要点:运用机器学习算法预测面试者的人格特征。
7、Speer, A. B. (2024). Empirical attrition modelling and discrimination: Balancing validity and group differences. Human Resource Management Journal, 34(1), 1-19.(被引用次数:13)
应用要点:运用机器学习来建立预测员工流失的模型。
- 2023年 -
8、Zhang, N., Wang, M., Xu, H., Koenig, N., Hickman, L., Kuruzovich, J., Ng, V., Arhin, K., Wilson, D., Song, Q. C., Tang, C., Alexander, L., & Kim, Y. (2023). Reducing subgroup differences in personnel selection through the application of machine learning. Personnel Psychology, 76(4), 1125-1159.(被引用次数:12)
应用要点:机器学习帮助减少选拔程序得分中种族和性别的子群体差异。
9、Song, Q., Tang, C., Newman, D. A., & Wee, S. (2023). Adverse impact reduction and job performance optimization via pareto-optimal weighting: A shrinkage formula and regularization technique using machine learning. Journal of Applied Psychology.(被引用次数:4)
应用要点:借鉴机器学习方法开发新技术,以解决人事选拔中运用帕累托权衡曲线时的收缩问题。
10、Rottman, C., Gardner, C., Liff, J., Mondragon, N., & Zuloaga, L. (2023). New strategies for addressing the diversity–validity dilemma with big data. Journal of Applied Psychology, 108(9), 1425.(被引用次数:10)
应用要点:提出两种在保持有效性的同时减少群体差异的机器学习方法并验证其有效性。
11、Landers, R. N., Auer, E. M., Dunk, L., Langer, M., & Tran, K. N. (2023). A simulation of the impacts of machine learning to combine psychometric employee selection system predictors on performance prediction, adverse impact, and number of dropped predictors. Personnel Psychology, 76(4), 1037-1060.(被引用次数:6)
应用要点:在常见的选拔情景中比较现代机器学习技术与普通最小二乘回归。
12、Hernandez, I., & Nie, W. (2023). The AI‐IP: Minimizing the guesswork of personality scale item development through artificial intelligence. Personnel Psychology, 76(4), 1011-1035.(被引用次数:10)
应用要点:运用神经网络构建人格题项池以帮助研究者开发有效的心理量表。
13、Fan, J., Sun, T., Liu, J., Zhao, T., Zhang, B., Chen, Z., Glorioso, M., & Hack, E. (2023). How well can an AI chatbot infer personality? Examining psychometric properties of machine-inferred personality scores. Journal of Applied Psychology, 108(8), 1277.(被引用次数:24)
应用要点:运用机器学习算法来测量大五人格。
14、Banks, G. C., Ross, R., Toth, A. A., Tonidandel, S., Goloujeh, A. M., Dou, W., & Wesslen, R. (2023). The triangulation of ethical leader signals using qualitative, experimental, and data science methods. The Leadership Quarterly, 34(3), 101658.(被引用次数:13)
应用要点:创建了一种机器学习模型,可以根据信息文本评价道德领导信号。
15、Speer, A. B., Perrotta, J., Tenbrink, A. P., Wegmeyer, L. J., Delacruz, A. Y., & Bowker, J. (2023). Turning words into numbers: Assessing work attitudes using natural language processing. Journal of Applied Psychology, 108(6), 1027.(被引用次数:8)
应用要点:运用机器学习算法进行自然语言处理,以定性员工数据对员工态度和观念进行自动评分。
16、Koenig, N., Tonidandel, S., Thompson, I., Albritton, B., Koohifar, F., Yankov, G., ... & Newton, C. (2023). Improving measurement and prediction in personnel selection through the application of machine learning. Personnel Psychology, 76(4), 1061-1123.(被引用次数:10)
应用要点:利用机器学习算法进行工作分析和人事选拔。
- 2022年 -
17、Min, H., Yang, B., Allen, D. G., Grandey, A. A., & Liu, M. (2022). Wisdom from the crowd: Can recommender systems predict employee turnover and its destinations?. Personnel Psychology, 77(2), 475-496.(被引用次数:6)
应用要点:借助协同过滤推荐系统算法来比较当前工作和替代工作的满意度。
18、Vanneste, B. S., & Gulati, R. (2022). Generalized trust, external sourcing, and firm performance in economic downturns. Organization Science, 33(4), 1599-1619.(被引用次数:22)
应用要点:控制变量是通过基于机器学习的双重选择过程来选择的。
19、Tonidandel, S., Summerville, K. M., Gentry, W. A., & Young, S. F. (2022). Using structural topic modeling to gain insight into challenges faced by leaders. The Leadership Quarterly, 33(5), 101576.(被引用次数:34)
应用要点:用结构主题模型来对大量领导者样本的非结构化文本进行归纳编码。
20、Speer, A. B., Christiansen, N. D., Robie, C., & Jacobs, R. R. (2022). Measurement specificity with modern methods: Using dimensions, facets, and items from personality assessments to predict performance. Journal of Applied Psychology, 107(8), 1428.(被引用次数:22)
应用要点:使用机器学习来检验人格层级中用于开发预测算法的最佳层级。
21、Schulz, F., Valizade, D., & Charlwood, A. (2022). The effect of intra-workplace pay inequality on employee trust in managers: assessing a multilevel moderated mediation effect model. Human Relations, 75(4), 705-733.(被引用次数:16)
应用要点:用机器学习方法来证明薪酬不平等与信任之间的曲线关系。
22、Sadler-Smith, E., Akstinaite, V., & Akinci, C. (2022). Identifying the linguistic markers of intuition in human resource (HR) practice. Human Resource Management Journal, 32(3), 584-602.(被引用次数:16)
应用要点:使用计算机化文本分析根据HR从业者对直觉事件的描述来识别直觉的语言标记。
23、Ng, W., & Sherman, E. L. (2022). In search of inspiration: External mobility and the emergence of technology intrapreneurs. Organization Science, 33(6), 2300-2321.(被引用次数:5)
应用要点:使用机器学习来对内部创业进行操作化。
24、Lee, A., Inceoglu, I., Hauser, O., & Greene, M. (2022). Determining causal relationships in leadership research using Machine Learning: The powerful synergy of experiments and data science. The Leadership Quarterly, 33(5), 101426.(被引用次数:38)
应用要点:运用机器学习技术为领导力效应的预测和因果模型提供信息。
25、Hickman, L., Bosch, N., Ng, V., Saef, R., Tay, L., & Woo, S. E. (2022). Automated video interview personality assessments: Reliability, validity, and generalizability investigations. Journal of Applied Psychology, 107(8), 1323.(被引用次数:129)
应用要点:开发自动化视频面试,使之从视频面试中提取的言语和行为等以评估大五人格。
26、Doornenbal, B. M., Spisak, B. R., & van der Laken, P. A. (2022). Opening the black box: Uncovering the leader trait paradigm through machine learning. The Leadership Quarterly, 33(5), 101515.(被引用次数:38)
应用要点:借助机器学习方法,使用大五人格和认知需求来预测领导角色的占有率。
27、Bhatia, S., Olivola, C. Y., Bhatia, N., & Ameen, A. (2022). Predicting leadership perception with large-scale natural language data. The Leadership Quarterly, 33(5), 101535.(被引用次数:28)
应用要点:应用机器学习技术来构建模型,将高维语义向量映射到参与者对领导效率的评分。
- 2021年 -
28、Yeomans, M. (2021). A concrete example of construct construction in natural language. Organizational Behavior and Human Decision Processes, 162, 81-94.(被引用次数:24)
应用要点:比较机器学习构建的模型与通用测量方式在衡量具体化这一构念上的有效性。
29、Min, H., Peng, Y., Shoss, M., & Yang, B. (2021). Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic. Journal of Applied Psychology, 106(2), 214.(被引用次数:77)
应用要点:应用深度学习技术从数百条推文中提取美国与居家办公相关的公众日常情绪。
30、McLeod, C. M., Pifer, N. D., & Plunkett, E. P. (2021). Career expectations and optimistic updating biases in minor league baseball players. Journal of Vocational Behavior, 129, 103615.(被引用次数:10)
应用要点:用机器学习创建运动员的职业树以此预测其职业轨迹。
- 2020年 -
31、Yeomans, M., Minson, J., Collins, H., Chen, F., & Gino, F. (2020). Conversational receptiveness: Improving engagement with opposing views. Organizational Behavior and Human Decision Processes, 160, 131-148.(被引用次数:108)
应用要点:开发了一种可解释的机器学习算法来识别接受性的语言特征。
32、Sun, K. Q., & Slepian, M. L. (2020). The conversations we seek to avoid. Organizational Behavior and Human Decision Processes, 160, 87-105.(被引用次数:29)
应用要点:使用机器学习的方法来检验话题回避的过程模型。
- 2019年 -
33、Spisak, B. R., van der Laken, P. A., & Doornenbal, B. M. (2019). Finding the right fuel for the analytical engine: Expanding the leader trait paradigm through machine learning?. The Leadership Quarterly, 30(4), 417-426.(被引用次数:20)
应用要点:使用一系列机器学习方法研究了领导者特质范式。
34、Sajjadiani, S., Sojourner, A. J., Kammeyer-Mueller, J. D., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. Journal of Applied Psychology, 104(10), 1207.(被引用次数:174)
应用要点:将机器学习技术应用于工作简历数据,以开发相关构念的量表。